If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x-3x^=(x+1)(x-5)
We move all terms to the left:
4x-3x^-((x+1)(x-5))=0
We add all the numbers together, and all the variables
x-((x+1)(x-5))=0
We multiply parentheses ..
-((+x^2-5x+x-5))+x=0
We calculate terms in parentheses: -((+x^2-5x+x-5)), so:We add all the numbers together, and all the variables
(+x^2-5x+x-5)
We get rid of parentheses
x^2-5x+x-5
We add all the numbers together, and all the variables
x^2-4x-5
Back to the equation:
-(x^2-4x-5)
x-(x^2-4x-5)=0
We get rid of parentheses
-x^2+x+4x+5=0
We add all the numbers together, and all the variables
-1x^2+5x+5=0
a = -1; b = 5; c = +5;
Δ = b2-4ac
Δ = 52-4·(-1)·5
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{5}}{2*-1}=\frac{-5-3\sqrt{5}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{5}}{2*-1}=\frac{-5+3\sqrt{5}}{-2} $
| 2x+x-10=55 | | 7x-25+11x-69=5x-3 | | 5x-3+7x-25=11x-69 | | (4x-5)=(6x-21) | | x/43=6 | | 7x-(3x-1=5) | | 3÷5×x=-9 | | 3/5×x=-9 | | 2w-4w=36 | | 20.16=24.y | | -10=-5/7u | | 3(-5x-8)=8x | | 75•1/2=x | | (7x-13)+(7x-13)=16x-38 | | 9x²+12x-3=0 | | 4.3•2.1=x | | 10x+5x=200+300 | | -3+3z=-9 | | 5/8-7/4y=-1/2 | | 16x=1160 | | 28(2x-1)=7(x+3) | | 3x—x+7=-15 | | 5x+3x+2x=4500 | | 2x+x+x=360 | | (11x-5)+(67)+(9x-15)+(6x+13)+(61)+(4x+29)=1440 | | 2c=33 | | 12+2p=2p-4 | | -32=-8(w+1) | | (7x+31)+(7x+31)+(7x+31)+(7x+31)+(7x+31)=540 | | 2=1.14^t | | (139)+(10x-11)+(121)+(9x-17)+(7x+6)+(153)+(9x-14)+(8x+15)=1080 | | -50=-4x-7x |